Inducing Partially-Defined Instances with Evolutionary Algorithms
نویسندگان
چکیده
This paper addresses the issue of reducing the storage requirements on Instance-Based Learning algorithms. Algorithms proposed by other researches use heuristics to prune instances of the training set or modify the instances themselves to achieve a reduced set of instances. Our work presents an alternative way. We propose to induce a reduced set of partially-defined instances with Evolutionary Algorithms. Experiments were performed with GALE, our fine-grained parallel Evolutionary Algorithm, and other well-known reduction techniques on several datasets. Results suggest that Evolutionary Algorithms are competitive and robust for inducing sets of partially-defined instances, achieving better reduction rates in storage requirements without losses in generalization accuracy.
منابع مشابه
Estimation of LPC coefficients using Evolutionary Algorithms
The vast use of Linear Prediction Coefficients (LPC) in speech processing systems has intensified the importance of their accurate computation. This paper is concerned with computing LPC coefficients using evolutionary algorithms: Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Dif-ferential Evolution (DE) and Particle Swarm Optimization with Differentially perturbed Velocity (PSO-DV...
متن کاملProposing a Novel Cost Sensitive Imbalanced Classification Method based on Hybrid of New Fuzzy Cost Assigning Approaches, Fuzzy Clustering and Evolutionary Algorithms
In this paper, a new hybrid methodology is introduced to design a cost-sensitive fuzzy rule-based classification system. A novel cost metric is proposed based on the combination of three different concepts: Entropy, Gini index and DKM criterion. In order to calculate the effective cost of patterns, a hybrid of fuzzy c-means clustering and particle swarm optimization algorithm is utilized. This ...
متن کاملAn Imperialist Competitive Algorithm and a Mixed Integer Programming Formulation for the Capacitated Vehicle Routing Problem
The Vehicle Routing Problem (VRP), a famous problem of operation research, holds a central place in combinatorial optimization problems. In this problem, a fleet vehicles with Q capacity start to move from depot and return after servicing to customers in which visit only ones each customer and load more than its capacity not at all. The objective is to minimize the number of used vehicles and t...
متن کاملThe Ising Model: Simple Evolutionary Algorithms as Adaptation Schemes
The investigation of evolutionary algorithms as adaptation schemes has a long history starting with Holland (1975). The Ising model from physics leads to a variety of different problem instances and it is interesting to investigate how simple evolutionary algorithms cope with these problems. A theoretical analysis is known only for the Ising model on the ring and partially for the Ising model o...
متن کاملMulti-layer Clustering Topology Design in Densely Deployed Wireless Sensor Network using Evolutionary Algorithms
Due to the resource constraint and dynamic parameters, reducing energy consumption became the most important issues of wireless sensor networks topology design. All proposed hierarchy methods cluster a WSN in different cluster layers in one step of evolutionary algorithm usage with complicated parameters which may lead to reducing efficiency and performance. In fact, in WSNs topology, increasin...
متن کامل